The Laguerre finite difference one-way equation solver
نویسندگان
چکیده
منابع مشابه
An Adaptive, Finite Difference Solver for the Nonlinear Poisson-Boltzmann Equation with Applications to Biomolecular Computations
We present a solver for the Poisson-Boltzmann equation and demonstrate its applicability for biomolecular electrostatics computation. The solver uses a level set framework to represent sharp, complex interfaces in a simple and robust manner. It also uses non-graded, adaptive octree grids which, in comparison to uniform grids, drastically decrease memory usage and runtime without sacrificing acc...
متن کاملA parallel space-time finite difference solver for the shallow-water equation
We investigate parallel algorithms for the solution of the shallow-water equation in a space-time framework. For periodic solutions, the discretized problem can be written as a large cyclic non-linear system of equations. This system of equations is solved with a Newton iteration which uses two levels of preconditioned GMRES solvers. The parallel performance of this algorithm is illustrated on ...
متن کاملFinite-Difference Approximations to the Heat Equation
This article provides a practical overview of numerical solutions to the heat equation using the finite difference method. The forward time, centered space (FTCS), the backward time, centered space (BTCS), and Crank-Nicolson schemes are developed, and applied to a simple problem involving the one-dimensional heat equation. Complete, working Matlab codes for each scheme are presented. The result...
متن کاملFinite-Difference Schemes for the Diffusion Equation
Abst rac t . The Crank-Nicolson scheme is widely used to solve numerically the diffusion equation, because of its good stability properties. It is, however, ill-behaved when large time-steps are used: the short wave-lengths may happen to be less damped than the long ones. A detailed analysis of this flaw is performed and an Mternative scheme is proposed, which removes this difficulty while pres...
متن کاملFinite Difference Schemes and the Schrodinger Equation
In this paper, we primarily explore numerical solutions to the Quantum 1D Infinite Square Well problem, and the 1D Quantum Scattering problem. We use different finite difference schemes to approximate the second derivative in the 1D Schrodinger’s Equation and linearize the problem. By doing so, we convert the Infinite Well problem to a simple Eigenvalue problem and the Scattering problem to a s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Physics Communications
سال: 2017
ISSN: 0010-4655
DOI: 10.1016/j.cpc.2017.01.014